Molecular testing for bacterial diseases transmitted by ticks

Saltillo, June 8th - 10th 2016

Maria D. Esteve-Gassent, PhD
Testing ticks and animals

Development of a multiplex PCR for the detection of:

- *B. burgdorferi*,
- *Ehrlichia canis, E. chaffeensis*,
- *Anaplasma phagocytophilum* and
- *Rickettsia rickettsii*
Undergraduate research team: Brian, Annie, Thomas and Brittany

Jaqueline: visiting scholar (BZ)
Mackenzie: PhD student

Joseph: PhD student and TVMDL
Fulltime employee
Background

- Tick-borne diseases are becoming a serious problem worldwide
- Lyme disease, Human Anaplasmosis and Rocky Mountain Spotted fever have emerged as the most common vector born bacterial illnesses in the US and Mexico.
Aim of the study

• Develop a Multiplex PCR technique
 – Multi pathogen detection
 – Compatible with Sequencing
 • Species confirmation
 • Molecular epidemiology
 – Compatible with diagnostic platforms
 • Real time PCR
 • Molecular Beacon PCR technology
 • Others
Lyme disease (LD)

- Most prevalent arthropod borne disease in the US
 - Over 30,000 cases reported yearly to CDC
 - Transmitted by *Ixodes scapularis* and *I. pacificus* tick bite (in the US)
 - Mammalian reservoirs are small rodents
- Caused by the spirochetal pathogen *Borrelia Burgdorferi*
- Multi-phase disorder in humans
 - Early LD (70% Erythema migrans)
 - Early disseminated LD (Flu like symptoms)
 - Chronic LD (Arthritis and carditis)
Ehrlichioses

- Small, gram-negative bacteria, round or ellipsoidal in shape.
- Symptoms in humans: fever, headache, fatigue, and muscle aches.
- These symptoms occur within 1-2 weeks following a tick bite.
Anaplasma phagocytophilum

- Gram-negative and intracellular: targets neutrophils, alters their function in the host, and forms morulae within vacuoles.
- Symptoms in humans: fever, headache, muscle pain, malaise, chills, nausea, abdominal pain, cough, and confusion.
- Severe clinical presentations may include difficulty breathing, hemorrhage, renal failure or neurological problems.
Rocky Mountain Spotted Fever (RMSF)

- Gram-negative, intracellular, coccobacillus bacterium
- Typical symptoms include: fever, lethargy, abdominal pain, vomiting, and muscle pain
- Rash found on 90% of patients
 - Classic RMSF rash - 2 to 5 days post fever
 - small, flat, pink macules - develops on distal extremities
 - Varies greatly and is unreliable at times
- Pathogen of interest: *Rickettsia rickettsii*
Previous Rickettsiosis Forum

- Tijuana May 2015
- Discussed the possibility of testing
 - *Rhipicephalus sanguinus* from Baja California
 - Associated with canids in areas where severe human cases were reported
 - Test an initial submission of ticks at UTSA
 - Test further specimens by qPCR methodology
Baja California Ticks

• Our team has developed a Multiplex qPCR protocol under revision for patent application

• Detects:
 – *B. burgdorferi*
 – *Ehrlichia canis*
 – *Rickettsia rickettsii*
 – Canine internal control

 – Additional targets
 • *Anaplasma phagocytophilum, E. chaffeensis*
Sensitivity

<table>
<thead>
<tr>
<th></th>
<th>Borrelia burgdorferi</th>
<th></th>
<th>Rickettsia rickettsii</th>
<th></th>
<th>Anaplasma phagocytophilum</th>
<th></th>
<th>Ehrlichia canis</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA ng/μl</td>
<td>4.95</td>
<td>N/A</td>
<td>4.95</td>
<td>N/A</td>
<td>4.97</td>
<td>N/A</td>
<td>4.97</td>
</tr>
<tr>
<td>Mean C<sub>t</sub></td>
<td>28.6</td>
<td>840</td>
<td>4.95E-07</td>
<td>27.7</td>
<td>840</td>
<td>4.97E-06</td>
<td>25.4</td>
</tr>
<tr>
<td>Copy Number</td>
<td>1.05E+09</td>
<td>N/A</td>
<td>1.05E+09</td>
<td>25.4</td>
<td>6900</td>
<td>25.1</td>
<td>28.6</td>
</tr>
<tr>
<td>DNA ng/μl</td>
<td>4.95E-07</td>
<td>30.6</td>
<td>1.24E-07</td>
<td>29.8</td>
<td>1.24E-07</td>
<td>28.8</td>
<td>28.6</td>
</tr>
<tr>
<td>Mean C<sub>t</sub></td>
<td>30.6</td>
<td>210</td>
<td>1.24E-07</td>
<td>29.8</td>
<td>4.97E-07</td>
<td>28.8</td>
<td>28.6</td>
</tr>
<tr>
<td>Copy Number</td>
<td>3.09E-08</td>
<td>32.8</td>
<td>3.09E-08</td>
<td>32.0</td>
<td>4.97E-08</td>
<td>32.1</td>
<td>69</td>
</tr>
<tr>
<td>DNA ng/μl</td>
<td>7.73E-09</td>
<td>34.2</td>
<td>7.73E-09</td>
<td>33.8</td>
<td>4.97E-08</td>
<td>32.1</td>
<td>69</td>
</tr>
<tr>
<td>Mean C<sub>t</sub></td>
<td>3.87E-09</td>
<td>35.9</td>
<td>3.87E-09</td>
<td>35.0</td>
<td>3.11E-09</td>
<td>36.1</td>
<td>69</td>
</tr>
<tr>
<td>Copy Number</td>
<td>1.93E-09</td>
<td>37.6</td>
<td>1.93E-09</td>
<td>36.8</td>
<td>1.55E-09</td>
<td>37.2</td>
<td>17.20</td>
</tr>
<tr>
<td>DNA ng/μl</td>
<td>1.93E-09</td>
<td>37.6</td>
<td>1.93E-09</td>
<td>36.8</td>
<td>2.16*</td>
<td>3.11E-09</td>
<td>17.20</td>
</tr>
<tr>
<td>Mean C<sub>t</sub></td>
<td>4.83E-10</td>
<td>0.0</td>
<td>4.83E-10</td>
<td>37.7</td>
<td>7.77E-10</td>
<td>0.0</td>
<td>4.31</td>
</tr>
<tr>
<td>Copy Number</td>
<td>3.87E-09</td>
<td>6.56</td>
<td>3.87E-09</td>
<td>6.56</td>
<td>7.77E-10</td>
<td>0.0</td>
<td>4.31</td>
</tr>
</tbody>
</table>

* indicates the detection limit
Specificity

<table>
<thead>
<tr>
<th>Substrates</th>
<th>B. burgdorferi qPCR C<sub>t</sub></th>
<th>A. phagocytophilum qPCR C<sub>t</sub></th>
<th>R. rickettsii qPCR C<sub>t</sub></th>
<th>E. Canis qPCR C<sub>t</sub></th>
<th>E. Chaffeensis qPCR C<sub>t</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>B. burgdorferi</td>
<td>30.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>A. phagocytophilum</td>
<td>0.0</td>
<td>25.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>R. rickettsii</td>
<td>0.0</td>
<td>0.0</td>
<td>27.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>E. canis</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>27.0</td>
<td>0.0</td>
</tr>
<tr>
<td>E. chaffeensis</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>26.2</td>
</tr>
<tr>
<td>Babesia canis</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>B. gibsoni</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>A. marginale</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>R. typhi</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Canine internal control

Specific to
- *Canis lupus familiaris*
- *Canis lupus*
- *Canis latrans*

Validated Against
- Equine
- Feline
- Caprine
- Ovine
- Cervine
- Bovine
- Porcine
- Avian
- Procyonine
- Vulpine
- Mephitidae

![Graph showing fluorescence over cycles for different components](image-url)

Legend:
- E. canis
- B. burgdorferi
- R. rickettsii
- ROX
- Canine internal control
Baja California samples

• We evaluated a total of 211 *R. sanguineus* ticks
 – Collected from dogs/environmental locations (n=160)

• Samples were processed for:
 – Confirmation of tick species, sex, age
 – Detection of pathogens

• All experiments were conducted at Texas A&M Veterinary Medical Diagnostic Lab (TVMDL)
Texas A&M Veterinary Diagnostic Laboratory
Locations

- 165 staff
- Over 30 professional staff who hold a DVM and/or PhD
- 21 professionals with board certifications in their specialty
- Strategically located in the livestock and poultry rich regions of Texas
Vision
To be the global leader in providing innovative and state-of-the-art veterinary diagnostic services

Mission
To promote animal health and protect agricultural, companion animal, and public health interests in Texas and beyond by providing excellence in veterinary diagnostic service
Clientele

- Veterinarians and animal owners from Texas and other states
- Local, state and national agencies
- International clientele
- Commercial and state diagnostic laboratories
Disciplines

- Bacteriology
- Virology
- Endocrinology
- Parasitology
- Serology
- Toxicology
- Molecular Genetics
- Clinical Pathology
- Histopathology
- Necropsy
- Poultry Diagnostics
- Epidemiology
- Drug Testing
Molecular Diagnostics

- Maceration of tick samples: Omni Bead Ruptor

- DNA extraction: KingFisher™ Flex

- qPCR amplification and analysis:
 - ABI® 7500 qPCR System
Results

<table>
<thead>
<tr>
<th>Patógenos</th>
<th>Positivos (%)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borrelia burgdorferi</td>
<td>0</td>
</tr>
<tr>
<td>Anaplasma phagocytophilum</td>
<td>0</td>
</tr>
<tr>
<td>Ehrlichia canis</td>
<td>18 (8.5)</td>
</tr>
<tr>
<td>Ehrlichia chaffeensis</td>
<td>0</td>
</tr>
<tr>
<td>Rickettsia rickettsii</td>
<td>2 (0.9%)</td>
</tr>
<tr>
<td>Total</td>
<td>20 (9.5%)</td>
</tr>
</tbody>
</table>
Conclusions

- *E. canis* positive ticks were confirmed by sequencing
- *R. rickettsia* positives are under study
- Zoonotic pathogens are present in *R. sanguineus* ticks of Baja California
- Epidemiological studies will certainly provide relevant information for the implementation of control programs
Take home message

- Tick borne diseases are circulating in the Texas-Mexico transboundary region
- Bi-national efforts can
 - Generate distribution maps
 - Assess Human risk
- Multiplex technology has been developed:
 - Eco-epidemiology (surveillance)
 - Molecular epidemiology (surveillance)
 - Diagnostics
Acknowledgements

- Texas A&M University
 - The Lyme Lab (Dr. Esteve-Gassent)
 - Abha Grover
 - Branden Nettles
 - Robi Chaffout
 - Ross Wittenborn
 - Emy Hassan
 - CVM
 - Thomas Craig, DVM, PhD
 - Karen Snowden, DVM, PhD
- TVMDL
 - Joseph Modarelli
 - Pam Ferro, MS, PhD
- USDA-ARS Kerrville
 - Beto Pérez de Leon, DVM, MS, PhD
- USDA APHIS:
 - Luis Lecuona, DVM
- CENAPRECE
- Secretaría de Salud
Thank you!
Gracias!

MEsteve-Gassent@cvm.tamu.edu